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Why Julia?

Tradeoff between execution speed and development speed:

● Development languages (e.g. Python) are easy, but slow

● Production languages (e.g. C) are hard, but fast

Julia aims to be the best of both. Was first released in 2012

I created an MPAS model in Julia to test its potential for scientific HPC.



Other Shallow Water and Ocean Models in Julia

● Klima (MIT)
● Oceananigans (MIT)
● ShallowWaters.jl (Milan K, University of Oxford)

All use a regular rectilinear mesh.

I use an unstructured TRiSK mesh in Julia, which is novel.



Equation Set & Discretization

The Shallow Water Equations

2 prognostic fields:

η - sea surface height

u&v - average water column 
group velocity

Primal & Dual Mesh (TRiSK)
● Julia version uses TRiSK discrete operators

η defined at cell centers

Normal velocity at edges

(+ Vertical layers)



Julia single-core CPU implementation

(included but not shown in snippet)

● Using a standard MPAS planar-hex mesh

● Variable names are identical to MPAS

● Code structure is similar to MPAS



Julia GPU version

The same gravity term 
calculation, but written as 
a GPU kernel

CUDA runs our kernel function 
for every edge/cell each on its 
own thread

CUDA getting index from thread 
replaces for loop, otherwise 
identical



Julia MPI (multi-core CPU) version 
● MPI libraries are available for Julia

● Implemented domain decomposition and halo updates, like in MPAS

Time stepping

MPI 
Communication 
for Halo update



Unit Tests of TRiSK Discrete Operators 

● Gradient, Divergence, Curl, Flux Mapping (primal 
to dual)

● GPU and CPU versions produce nearly identical 
results



Exact solution test cases & Convergence (CPU & GPU)
Kelvin wave Inertia-gravity wave

Time horizon: 25000

Close to second-order convergence 
between numerical and exact 
solution
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● Verification against exact solutions for two test cases

● Julia can produce visualization like python (pull in 
python libraries)



CPU versus GPU performance comparison

Julia-CPU: 22.9ms per timestep

Julia-GPU: 0.04ms per timestep

500x faster on the GPU!

● Tested on personal NVIDIA GTX 1080 GPU
○ 2560 NVIDIA CUDA Cores
○ one GPU thread per MPAS edge

● Test domain is 100x100 cells.
● Timing with Benchmarks.jl package 20 Streaming multiprocessors,

2048 threads per streaming multiprocessor

40x times faster than Python-CPU version
   (using MPAS-Python code from Sid Bishnu)



Comparison of Julia-MPI to Fortran-MPI on CPUs

● We are currently benchmarking Julia and Fortran MPAS on supercomputers.

● Our early rough benchmarks put Fortran strongly in the lead, almost 70x 

faster than Julia

● However, the Fortran MPAS Ocean has been highly optimized, and we just 

started optimizing Julia-MPI MPAS, like core-count to thread-count.

● These are also early results, nonlinear scaling may effect this as we test with 

higher resolutions and add to the Julia code.

○ Similar projects have found comparable speeds between Julia-MPI and Fortran or C with MPI



Conclusion

● Julia was fast to develop
○ 3 months for MPAS shallow water Julia CPU, GPU, and multi-core versions 

● Easy to switch from from CPU to GPU version
○ Drop in CUDA lines instead of for loop, add kernel wrapper

● Julia does require some time to learn - not quite as easy as Python
○ Julia has dynamic typing like python
○ Can create prototypes very fast with this feature
○ For performance, we end up typing everything anyway

● Julia delivers excellent performance
○ 40x faster than Python on single CPU
○ 500x speed-up from CPU to GPU
○ In current testing, Fortran-MPI is much faster (70x) than Julia-MPI, but this is preliminary

● This project shows that julia could be useful for computational physics, and 
deserves further investigation.


